与大模型交手近 1500 天,智源仍在坚持原始创新

前言

2024 上半年, OpenAI 的成果从世界模拟器 Sora,到首个实现多模态 in 到多模态 out 的 GPT-4o ,仍在强势推进着迈向 AGI 的节奏。面对技术上的差距,追赶 OpenAI ——是这场人工智能革命浪潮发展至今, AI 界仍在追求的目标和努力的方向。

但其实,当下的 AI 技术尚处于高速迭代的过程,依然有非常多有挑战性的问题没有被解决,而其中的研究趋势和范式也不一定只有 OpenAI 才能引领。国内对人工智能对研究不应是亦步亦趋,也不应止于 OpenAI。

几乎与 OpenAI 同期捕捉到大模型的机遇,2018 即年成立的北京智源人工智能研究院推出我国首个大模型「悟道」,并一直承担着中国在人工智能行业原始创新的角色。一位悟道大模型的早期参与者告诉 AI 科技评论,「眼光和魄力」力是智源在在本次大模型浪潮中的可贵之处,甚至在最开始国内大模型起步阶段,智源会毫不犹豫地给予经费和算力支持。

如今的智源已走过 6 个年头,在第六届北京智源大会上值得注意的是,不同于以往从悟道 1.0 到 3.0 所推出的系列模型,本次智源推出了大模型全家桶,分别是大语言模型系列、多模态模型系列、具身智能大模型、生物计算大模型。这背后的原因是,今年 2 月王仲远接任智源研究院院长,带领智源团队基于大模型通往 AGI 的技术路径的研判,对未来三到五年的战略规划进行了重新的梳理和判断。

「智源不会去做各企业已经在做的、重复性事情,而是去做原始性的创新,要去攻克的是业界的关键痛点抑或是前沿技术的热点,真正为中国去做技术突破。」智源人工智能研究院院长王仲远说道。

基于这一理念,在具身智能、生物计算等十分前沿的领域中,智源起到提前布局的开创性引领作用,打出了「人无我有」的先手,推出了具身大模型,在机器人泛化动作执行和智能大小脑决策控制等方面取得了多项世界级突破性成果。在国内发展尚不成熟的生物计算大模型中,智源研发了全原子生物分子模型OpenComplex 2。

在国内争相突破万亿语言模型的节奏下,智源能做到「人有我优」,研发了全球首个低碳单体稠密万亿语言模型 Tele-FLM-1T。多模态大模型层面,智源并没有采用 DiT 架构,而是押注自回归路线研发了原生多模态世界模型 Emu 3,同时也推出了轻量级图文多模态模型系列 Bunny-3B/4B/8B。

正如智谱 CEO 张鹏在智源大会上所说,智源从最早被定义成为 NGO 的偏新型研发机构,发展到今天已成为国内甚至国际人工智能领域的一面旗帜。智源也已经为中国人工智能界奠定了研究基础,培养了诸多当下业界中的顶尖人才,使得后人能够站在巨人的肩膀上进一步看到更广阔的 AI 世界。

而当下的智源亦坚持初衷,不懈怠脚步。「令人惊艳的东西不能只出现在大洋的彼岸。」王仲远说道。

1、0-1 的原始性创新

「大模型的思潮和很多技术都是从智源发展起来的。」百川智能创始人王小川在 2024 智源大会上说道。

当下,非营利性科研组织站位使得智源既有技术高度,又有智库的角色,能更多的进行0-1的原始性创新。

解决万亿参数模型的收敛痛点

万亿参数模型,是今年各大模型厂商的必争之地。

模型规模的提升,带来了模型精度的提升,但因为参数量规模过大,也对模型的训练带来了极大的挑战,包括内存需求大、网络通信量大、训练或推理性能低等问题,常常难以收敛。因此,今年市面上见到的更多为稀疏激活模型,较少有单体稠密的万亿参数模型。

可以说,现在的大模型生态格局中,缺少一个单体稠密万亿参数模型。王仲远告诉 AI 科技评论,智源在做的事是解决这一痛点,当某家厂商需要训练万亿乃至更大规模参数模型的时候,无需从头去解决收敛等一系列问题,开源社区中有一个好的初始化的版本,这时再基于更强的算力和数据量即可对模型进行进一步迭代,不再从头造轮子。

巨大算力消耗是大参数模型无法避开的问题。对此,智源联合中国电信人工智能研究院开发了基于模型生长和损失预测等关键技术,推出全球首个低碳单体稠密万亿语言模型 Tele-FLM-1T能够提高训练效率,降低能耗,实现低碳生长。该模型与百亿级的 52B 版本,千亿级的 102B 版本共同构成Tele-FLM系列模型。

仅以业界普通训练方案9%的算力资源,基于112台A800服务器,用4个月完成3个模型总计2.3Ttokens的训练,成功训练出万亿稠密模型 Tele-FLM-1T。模型训练全程做到了零调整零重试,算力能效高且模型收敛性和稳定性好。

目前,TeleFLM系列模型已经全面开源了52B版本,核心技术(生长技术、最优超参预测)、训练细节(loss曲线、最优超参、数据配比和Grad Norm等)均开源,Tele-FLM-1T版本即将开源。

Tele-FLM-52B 版本开源地址https://huggingface.co/CofeAI/Tele-FLM

Tele-FLM-Chat 试用(纯模型单轮对话版)地址https://modelscope.cn/studios/FLM/ChatFLM

并且,生长策略也为大模型训练提供了其他可能性,王仲远透露,将会将其用于异构芯片的异构计算上,基于此训练 MoE 模型。

不走 DiT 架构的多模态模型

今年,比万亿参数模型更火的趋势是多模态大模型。而其中在文生视频这一层面上,国内外主流的研究方式均以 Sora 的 DiT 架构为主,而智源却没有跟随 OpenAI 。

「DiT 当然能达到一个可用的产品级的模型,这是毫无疑问的。但如果瞄准的目标是真正为 AGI 而使用的多模态大模型,我们会认为自回归路线才是更佳的技术路线。」王仲远如是判断。

基于此,智源研发了原生多模态世界模型 Emu 3,最开始即是为统一的多模态生成和理解而设计,采用智源自研的多模态自回归技术路径,既统一了视频、图像、文字,也统一了生成和理解。目前,Emu3在持续训练中,经过安全评估之后将逐步开源**。**

「这个技术路线真的很难,但这也恰恰是适合智源研究院来做的。但同时,我们在做原始创新的时候要尊重科学规律,也接受它失败的可能性,但即使失败也是非常有意义的。」

同时,为适应智能端侧的应用,智源研究院推出了轻量级图文多模态模型系列 Bunny-3B/4B/8B,该模型系列采用灵活架构,可支持多种视觉编码器和语言基座模型。多个榜单的综合结果表明,Bunny-8B 的多模态能力可达到 GPT-4o 性能的 87%。目前,Bunny 模型参数、训练代码、训练数据已全部开源。

FlagOpen,打造大模型时代的Linux

一直以来,智源的大模型开源有两条线同时进行:一条线是进行智源所研发的悟道系列大模型的开源;第二条线是将整个大模型技术体系开源,包括模型、工具、算法代码的开源等,建立了 FlagOpen。

时至今日,FlagOpen 的开源更多需要满足不断攀升的训练和推理计算需求,应对大规模AI系统和平台面临的集群内或集群间异构计算、高速互联、弹性稳定的技术挑战。于是,智源研究院推出了面向大模型、支持多种异构算力的智算集群软件栈 FlagOS。

FlagOS 融合了智源长期深耕的面向多元 AI 芯片的关键技术,包括异构算力智能调度管理平台九鼎、支持多元AI异构算力的并行训推框架 FlagScale、支持多种AI芯片架构的高性能算子库 FlagAttention和 FlagGems,集群诊断工具 FlagDiagnose 和 AI 芯片评测工具FlagPerf。

FlagOS 如同“操作系统”一样,集异构算力管理、算力自动迁移、并行训练优化、高性能算子于一体。向上支撑大模型训练、推理、评测等重要任务,向下管理底层异构算力、高速网络、分布式存储。

目前,FlagOS已支持了超过50个团队的大模型研发,支持8种芯片,管理超过4600个AI加速卡,稳定运行20个月,SLA超过99.5%,帮助用户实现高效稳定的集群管理、资源优化、大模型研发。FlagOS的推出将为中国新一代智算中心的建设提供助力,显著提升智算集群的能力水平,加速大模型产业的发展。

2、「人无我有」的先手

「大模型变化得非常快,其中确实有部分工作是商业公司没有动力、也没有资源做的事。」面壁智能 CEO 李大海在 2024 智源大会上探讨道。

针对万亿参数模型、多模态模型等相对主流且有共识的项目,各大厂商花费较大力气尚可一试,但在在具身智能、生物计算等十分前沿的领域中,并不是任何一家都具备「想做就能做」的条件。对此,智源会打出「人无我有」的先手。

当下,我们会将大模型视作通用人工智能的基础、数字世界的智能体。未来,数字世界的智能体也会逐渐进入到物理世界,其方法有二:一是进入到硬件设备中,也就是具身智能;二是进入到微观世界,即和生命分子相关,是生物计算大模型。

具身智能大模型

智源研究院具身智能创新中心在机器人泛化动作执行和智能大小脑决策控制等方面取得了多项世界级突破性成果。

在具身智能通用抓取能力方面研发了泛化抓取技术ASGrasp,针对跨任意形状和材质的泛化难题,智源率先突破95%的真机实验成功率,从而实现了全球领先的商业级动作执行水平。借助这项技术,即使在复杂光线透射、反射的情况下,机器人依然能够准确感知包括透明、高反光物体的形状和姿态,并预测出高成功率的抓取位姿。

在分级具身大模型系统方面,智源研发了能够从失败中重思考、再尝试的铰接物体操作大模型系统 SAGE。该系统有效结合了三维视觉小模型对空间几何的精确感知能力和通用图文大模型的通用物体操作知识,使大模型驱动的机器人能够在任务执行失败时能够重新思考并再次尝试新的交互方式。

并且,智源还研发了全球首个能做到开放指令控制六自由度物体拿取放置的大模型系统Open6DOR。该系统不仅像谷歌RT系列大模型一样按照自然语言指令中的要求将物体放到指定位置,还能够进一步对物体的姿态进行精细化控制。

在面向技术终局的端到端具身大模型层面,智源发布了全球首个端到端基于视频的多模态具身导航大模型 NaVid。该模型可直接将机器人视角的视频和用户的自然语言指令作为输入,端到端输出机器人的移动控制信号。

针对新一轮的具身智能热,王仲远也提出了一些冷思考,要用客观理性的态度来看待前沿技术,能够去接受它存在周期并持续投入知道跨越周期。

生物计算大模型

此外,智源研究院,还探索了生成式人工智能应用于分子生物学中的应用。智源研究院研发的全原子生物分子模型OpenComplex 2,是世界领先的大分子结构预测模型,能有效预测蛋白质、RNA、DNA、糖类、小分子等复合物。在生物分子结构预测领域国际竞赛CAMEO(Continous Automated Model EvaluatiOn)中,OpenComplex 连续2年稳居赛道第一,并获得了CASP(Critical Assessment of Techniques for Protein Structure Prediction)15 的RNA自动化赛道预测冠军。

OpenComplex 2 是基于全原子建模的生命分子基础模型,科研人员发现不仅可以预测大分子的稳定结构,还初步具备预测分子多构型以及折叠过程的能力。基于这样的能力,生命科学家可以进一步探索蛋白质的生物学功能。目前,智源已和研究伙伴在多项重要疾病上展开了研究,提供成药性和分子机理研究。

智源研究院构建了全球首个实时孪生心脏计算模型,可实现高精度的前提下生物时间/仿真时间比小于1。实时心脏计算模型是虚拟心脏科学研究的开端,是孪生心脏走向临床应用的基础。基于这一模型,智源将创新性地采用物理-数据双驱动模型,融合第一性原理和人工智能方法,从亚细胞级、细胞级、器官级、躯干级仿真出一个“透明心脏”,且能根据患者的临床数据,构建出反映患者的个性化生理病理的孪生心脏,从而进行药物筛选、治疗方案优化、术前规划等临床应用。

3、AI 研究的新范式

「要是三年前问我还需要多长时间可以实现 AGI,我可能会回答50年,但这几年随着大模型的发展,我认为这个数字可以除以 2,20年左右即可能实现。」在2024智源大会的现场,中国工程院院士、清华大学智能产业研究院(AIR)院长张亚勤笑着说道。

具体来看,信息智能领域 0 至 5 年内,即可在对语言、图像、声音和视频的理解、生成等方面通过新图灵测试;物理智能领域 0 至 10年内,能实现大模型在物理环境中的理解与操作能力;生物智能领域 0 至 20 年内,都会聚焦人体、脑机接口、生物体、制药和生命科学,实现大模型与生物体连结的生物智能。

AGI 的加速来临,也侧面要求 AI 有新范式的变动。单纯靠 Scaling Law ,做不到 AGI。

在 Sora 及Dall-E团队负责人阿迪蒂亚·拉梅什(Aditya Ramesh)与纽约大学助理教授谢赛宁的交流过程中,也从技术的角度传递出技底层技术的变化:AI 行业正在从依赖手工标注的深度学习模型转向能够通过自然语言和描述性文本重建视觉内容的高级模型。

快速流变的同时, AI 带来的失控风险和安全问题也需提上日程。对此,零一万物创始人李开复博士表示,如果我们越来越依赖Reward model ,完全让 AI 自己找路径的话,发生失控的概率或许会增高,但中长期来看,需要尝试用“以子之矛攻子之盾”——用更好的技术解决技术带来的挑战。

尽管到如今 AI 发展面临诸多可能性与挑战,但回顾 2020 年开始悟道模型的研发,智源至少是在亚洲地区最早投入,而且真的投入去做大模型的机构。「最初成立智源、做悟道道想法是非常难得、非常领先的,今后 AI 研究的视野也会更宽广,智源也会成为促进中国 AI 生态繁荣的平台。」

AGI 还有很长的路要走。王仲远预判,GPT-4 之后的突破难度会更大,对算力资源、核心算法的要求都会更高,彼时将不是追赶的过程,而是突破的过程。

如何系统的去学习大模型LLM ?

作为一名热心肠的互联网老兵,我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。

但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的 AI大模型资料 包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来

😝有需要的小伙伴,可以V扫描下方二维码免费领取🆓

一、全套AGI大模型学习路线

AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!

img

二、640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

img

三、AI大模型经典PDF籍

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。

img

在这里插入图片描述

四、AI大模型商业化落地方案

img

阶段1:AI大模型时代的基础理解

  • 目标:了解AI大模型的基本概念、发展历程和核心原理。
  • 内容
    • L1.1 人工智能简述与大模型起源
    • L1.2 大模型与通用人工智能
    • L1.3 GPT模型的发展历程
    • L1.4 模型工程
    • L1.4.1 知识大模型
    • L1.4.2 生产大模型
    • L1.4.3 模型工程方法论
    • L1.4.4 模型工程实践
    • L1.5 GPT应用案例

阶段2:AI大模型API应用开发工程

  • 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
  • 内容
    • L2.1 API接口
    • L2.1.1 OpenAI API接口
    • L2.1.2 Python接口接入
    • L2.1.3 BOT工具类框架
    • L2.1.4 代码示例
    • L2.2 Prompt框架
    • L2.2.1 什么是Prompt
    • L2.2.2 Prompt框架应用现状
    • L2.2.3 基于GPTAS的Prompt框架
    • L2.2.4 Prompt框架与Thought
    • L2.2.5 Prompt框架与提示词
    • L2.3 流水线工程
    • L2.3.1 流水线工程的概念
    • L2.3.2 流水线工程的优点
    • L2.3.3 流水线工程的应用
    • L2.4 总结与展望

阶段3:AI大模型应用架构实践

  • 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
  • 内容
    • L3.1 Agent模型框架
    • L3.1.1 Agent模型框架的设计理念
    • L3.1.2 Agent模型框架的核心组件
    • L3.1.3 Agent模型框架的实现细节
    • L3.2 MetaGPT
    • L3.2.1 MetaGPT的基本概念
    • L3.2.2 MetaGPT的工作原理
    • L3.2.3 MetaGPT的应用场景
    • L3.3 ChatGLM
    • L3.3.1 ChatGLM的特点
    • L3.3.2 ChatGLM的开发环境
    • L3.3.3 ChatGLM的使用示例
    • L3.4 LLAMA
    • L3.4.1 LLAMA的特点
    • L3.4.2 LLAMA的开发环境
    • L3.4.3 LLAMA的使用示例
    • L3.5 其他大模型介绍

阶段4:AI大模型私有化部署

  • 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
  • 内容
    • L4.1 模型私有化部署概述
    • L4.2 模型私有化部署的关键技术
    • L4.3 模型私有化部署的实施步骤
    • L4.4 模型私有化部署的应用场景

学习计划:

  • 阶段1:1-2个月,建立AI大模型的基础知识体系。
  • 阶段2:2-3个月,专注于API应用开发能力的提升。
  • 阶段3:3-4个月,深入实践AI大模型的应用架构和私有化部署。
  • 阶段4:4-5个月,专注于高级模型的应用和部署。
这份完整版的大模型 LLM 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

😝有需要的小伙伴,可以Vx扫描下方二维码免费领取🆓

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/731325.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

密码CTF(5)

一、[安洵杯 2020]密码学?爆破就行了——sha256掩码爆破 1.题目: #!/usr/bin/python2 import hashlib from secret import SECRET from broken_flag import BROKEN_FLAGflag d0g3{ hashlib.md5(SECRET).hexdigest() } broken_flag d0g3{71b2b5616…

解决virtualbox虚拟机与主机之间复制粘贴

1、在VirtualBox管理器中设置共享粘贴板和拖放方向为双向 2、在存储中设置使用主机输入输出(I/O)缓存。 3、在存储→控制器:SATA→***.vdi下勾选固态驱动器 4、在虚拟机→设备→安装增强功能 如果上述操作重启虚拟机后,还不行&am…

揭秘Xinstall如何助力App推广,提升用户量与转化率双指标!

在移动互联网时代,App的推广与运营成为了每个开发者必须面对的重要课题。然而,推广效果的评估和优化往往令众多开发者头疼不已。今天,我们将为您揭秘一款能够解决这一痛点的利器——Xinstall,带您一起探讨它如何助力App推广&#…

深度神经网络一

文章目录 深度神经网络 (DNN)1. 概述2. 基本概念3. 网络结构 深度神经网络的层次结构详细讲解1. 输入层(Input Layer)2. 隐藏层(Hidden Layers)3. 输出层(Output Layer)整体流程深度神经网络的优点深度神经…

项目实践---Windows11中安装Zookeeper/Hadoop/Hive的部分问题解决

一.Hadoop与Hive兼容版本选择 正常来说,Hadoop与Hive版本不兼容会出现很多问题导致hive安装失败,可以先确定HIve的版本,比如:要用Hive3.1.2版本,该如何确定使用Hadoop的版本呢,需要我们在hive源码中找到对…

C盘满了怎么清理?一招让你远离C盘空间不足的烦恼

C盘满了怎么清理?一招让你远离C盘空间不足的烦恼,当C盘空间满了时,会给我们来一系列烦恼和潜在问题。比如:系统运行缓慢、程序崩溃或无法安装、启动时间变长、系统不稳定、文件管理困难、游戏卡顿、电脑卡顿、系统故障等问题&…

「漏洞复现」真内控国产化开发平台 preview 任意文件读取漏洞

0x01 免责声明 请勿利用文章内的相关技术从事非法测试,由于传播、利用此文所提供的信息而造成的任何直接或者间接的后果及损失,均由使用者本人负责,作者不为此承担任何责任。工具来自网络,安全性自测,如有侵权请联系删…

Python基础用法 之 输入 与 输出

1.输入 (1)什么是输入? 输入:获取键盘的输入信息。 (2)语法 变量 input(给使⽤者的提示信息,即告诉别⼈输入什么内容) (3)注意事项 代码从上到下执⾏, 当代码执⾏遇到 input 的时候…

【产品经理】订单处理8-智能分仓

在电商ERP系统中,通常智能分仓策略是系统中最重要的功能之一,大公司若仓库较多时,智能分仓策略中也会加入大数据团队,通过算法来计算最优仓库。 本次讲解的智能分仓适用于中小公司,适合拥有2个以上10个以下仓库的公司…

ServBay 下一代Web开发环境

ServBay是一个集成式、图形化的本地化Web开发环境。开发者通过ServBay几分钟就能部署一个本地化的开发环境。解决了Web开发者(比如PHP、Nodejs)、测试工程师、小型团队安装和维护开发测试环境的问题,同时可以快速的进行环境的升级以及维护。S…

如何将现有系统逐步优化成微服务设计

目录 基础服务改造核心步骤准备阶段实施阶段 基础服务设计 本文诞生于学习架构实践专栏后的深思以及总结,结合公司之前“大泥球”的架构风格,改造服务设计的思维。 改造公司系统服务主要原因:1、代码类似“屎山”,牵一发而动全身&…

Virtualbox主机和虚拟机之间文件夹共享及双向拷贝

在VirtualBox这样的虚拟化环境中,实现主机与虚拟机之间的文件夹共享与双向文件传输是一个常见的需求。下面,我们将详细讲解如何在VirtualBox中实现这一功能。 一、安装与准备 首先,确保你已经安装了VirtualBox,并在其上成功创建…

Python学习打卡:day12

day12 笔记来源于:黑马程序员python教程,8天python从入门到精通,学python看这套就够了 目录 day1292、全国疫情地图构建数据整理获取数据数据整体结构(全国)省数据结构获取每个省份的确诊数据上述代码执行后输出&…

JavaScript的学习之旅之基本数据类型

目录 一、字面量(常量)和变量 二、标识符 三、数据类型 1.String类型 2.Number类型 四、布尔值类型 五、Null和Undefined类型 一、字面量(常量)和变量 字面量:不可变的数据,一般位于等式的右边 变量&…

vue生成二维码跳转到小程序

参考 https://blog.csdn.net/qq_51678620/article/details/121397610 https://blog.csdn.net/blue__k/article/details/125410448 this.$nextTick(()>{// new qrcode(this.$refs.qrCodeDiv, {// text: "https://www.aiitss.cn/member?id"id,//二维码链接&…

Python网络数据抓取(9):XPath

引言 XPath 是一种用于从 XML 文档中选取特定节点的查询语言。如果你对 XML 文档不太熟悉,XPath 可以帮你完成网页抓取的所有工作。 实战 XML,即扩展标记语言,它与 HTML,也就是我们熟知的超文本标记语言,有相似之处&am…

内存马的错误参数获取,导致原有接口失效解决方案

内存马的错误参数获取,导致接口失效。 前言 java Listener 类型内存马,在使用request.getParameter(String name); 获取请求参数去判断是否是恶意请求的时候,会影响某些框架无法接收到参数。 例子 在Jersey 框架 使用 MultivaluedMap 去接…

名校介绍|英国六所红砖大学

​近年来由于美国的拒签率增加,很多公派申请者,尤其是CSC资助的访问学者、公派联合培养学生及博士后研究学者,把出国目标改为其它发达国家,尤以英国居多,本文知识人网小编就重点介绍六所英国红砖大学。 我们在“英国大…

乐观锁实现库存控制

一、什么是乐观锁? 乐观锁是一种基于版本控制的并发控制机制。在乐观锁的思想中,认为数据访问冲突的概率很低,因此不加锁直接进行操作,但在更新数据时会进行版本比对,以确保数据的一致性。 乐观锁的原理主要基于版本号…

Spring IOC 控制反转(注解版)

Spring IOC 控制反转 文章目录 Spring IOC 控制反转一、前言什么是控制反转(IOC)什么是依赖注入(DI) 二、介绍 IOC2.1 传统思想代码2.2 解决方案2.3 IOC思想代码2.4 IOC 使用(Autowired依赖注入)2.5 IOC 优…
最新文章